1. 聚类算法都是无监督学习吗?

什么是聚类算法?聚类是一种机器学习技术,它涉及到数据点的分组。给定一组数据点,我们可以使用聚类算法将每个数据点划分为一个特定的组。理论上,同一组中的数据点应该具有相似的属性和/或特征,而不同组中的数据点应该具有高度不同的属性和/或特征。聚类是一种无监督学习的方法,是许多领域中常用的统计数据分析技术。

常用的算法包括K-MEANS、高斯混合模型(Gaussian Mixed Model,GMM)、自组织映射神经网络(Self-Organizing Map,SOM)

2. k-means(k均值)算法

2.1 算法过程

K-均值是最普及的聚类算法,算法接受一个未标记的数据集,然后将数据聚类成不同的组。

K-均值是一个迭代算法,假设我们想要将数据聚类成 n 个组,其方法为:

来表示聚类中心,用𝑐(1),𝑐(2),...,𝑐(𝑚)来存储与第𝑖个实例数据最近的聚类中心的索引,K-均值算法的伪代码如下:

Repeat {
    for i = 1 to m
    c(i) := index (form 1 to K) of cluster centroid closest to x(i)
    for k = 1 to K
    μk := average (mean) of points assigned to cluster k
}

算法分为两个步骤,第一个 for 循环是赋值步骤,即:对于每一个样例𝑖,计算其应该属于的类。第二个 for 循环是聚类中心的移动,即:对于每一个类𝐾,重新计算该类的质心。

K-均值算法也可以很便利地用于将数据分为许多不同组,即使在没有非常明显区分的组群的情况下也可以。下图所示的数据集包含身高和体重两项特征构成的,利用 K-均值算法将数据分为三类,用于帮助确定将要生产的 T-恤衫的三种尺寸。

2.2 损失函数

K-均值最小化问题,是要最小化所有的数据点与其所关联的聚类中心点之间的距离之和,因此 K-均值的代价函数(又称畸变函数 Distortion function)为:

其中 ![](