基于人类反馈的强化学习(RLHF, Reinforcement Learning from Human Feedback)是目前最成熟、应用最广泛的LLM偏好对齐技术。OpenAI的ChatGPT、Anthropic的Claude等顶级AI助手都采用了RLHF来确保模型输出符合人类价值观和偏好。本文将深入探讨RLHF的工作原理、实现流程和最佳实践。
RLHF将强化学习技术与人类反馈相结合,通过多阶段训练过程,引导语言模型学习人类偏好。与SFT直接从指令-响应对学习不同,RLHF通过奖励信号来优化模型行为。
核心思想:
RLHF通常包含三个主要阶段:
# SFT阶段伪代码示例def train_sft_model(pretrained_model, sft_dataset):
model = load_pretrained_model(pretrained_model)
for epoch in range(num_epochs):
for batch in sft_dataset:
inputs, targets = batch
loss = model.compute_loss(inputs, targets)
loss.backward()
optimizer.step()
optimizer.zero_grad()
return model
# 奖励模型训练伪代码示例def train_reward_model(pretrained_model, preference_dataset):
reward_model = RewardModel(pretrained_model)
for epoch in range(num_epochs):
for batch in preference_dataset:
prompt, chosen_response, rejected_response = batch
chosen_score = reward_model.score(prompt, chosen_response)
rejected_score = reward_model.score(prompt, rejected_response)
# 对比损失,让chosen_score > rejected_score loss = -torch.log(torch.sigmoid(chosen_score - rejected_score))
loss.backward()
optimizer.step()
optimizer.zero_grad()
return reward_model